Every Time You Do This:

$$
\begin{aligned}
& \text { Simplify } \\
& \begin{aligned}
f(x) & =\frac{x^{2}+2 x+1}{x^{2}+3} \\
& =\frac{2 x+1}{3}
\end{aligned}
\end{aligned}
$$

Every Time You Do This:

Thinking is hard, maybe that's why hoooomans don't do it always

Simplify
$f(x)=\frac{x^{2}-16}{x+z}$

$$
=x-8
$$

2 KITTENS DIE

Correction: Consider an example where we can simplify straight away

Correction: Consider an example where we must factorise first
We CANNOT $\quad \frac{x^{2}+x-2}{2 x^{2}+7 x+6}$
terms are NOT multiplied

We factorise first instead
$=\frac{(x+2)(x-1)}{(2 x+3)(x+2)}$ which is $\frac{(x+2) \times(x-1)}{(2 x+3) \times(x+2)}$
Now we can cancel since we have multiplication

$$
=\frac{(x+2)(x-1)}{(2 x+3)(x+2)}=\frac{x-1}{2 x+3}
$$

We cancel common factors (colour pairs)

Remember to stay away from any other cancel culture

Solving equation by one Blonde:
$\frac{1}{n} \sin x=?$
$\frac{1}{x} \sin x=?$

And respect the difference addition and multiplication

Ok, ok, I'm sorry for the mistakes

© mymathscloud

Every Time You Do This:

$$
\begin{aligned}
& 3(x+5) \\
& =3 x+8
\end{aligned}
$$

You make this puppy SO DISAPPOINTED in you

Every Time You Do This:

$$
(x+3)^{2}
$$

$$
=
$$

A cat attacks YOU

Correction of both :
$3(x+5)=3 x+15$
The brackets mean multiply, so the 3 and 5 are multiplied
 $(x+3)^{2}=(x+3)(x+3)=x^{2}+3 x+3 x+9$
\qquad $=x^{2}+6 x+9$
Write out as 2 brackets and then expand
Remember: $(3 x)^{2}$ is not the same as $(3+x)^{2}$
$(3 x)^{2}=3 x \times 3 x=9 x^{2}$
$(3+x)^{2}=(3+x)(3+x)=x^{2}+6 x+9$

Every Time You Do This:

Everv Time You Do This:

$a+a+a=a^{3}$

Someone unfriends you

Correction:
The object that we add or subtract doesn't change. Only the number in front does.

$$
a+a+a=3 a
$$

Sometimes getting unfriended on Facebook is magical.. Really... It's like the trash took itself out. However, it is good to keep friends

$$
\begin{aligned}
& \sqrt{2}+\sqrt{8}=\sqrt{10} \\
& \sqrt{x^{2}+9}=x+3
\end{aligned}
$$

Math Unicorn Can't Understand Why You Would Hurt Its Feelings So Badly

Correction:

$1 \sqrt{2}+\sqrt{8}$ cannot be added unless the roots are the same (adding and subtracting surds is the same as adding and
 subtracting algebra e.g. $2 x+3 x=5$ and $2 \sqrt{7}+3 \sqrt{7}=5 \sqrt{7}$)
I Sometimes using surd knowledge we can make the roots the same

$$
\sqrt{2}+\sqrt{8}=\sqrt{2}+2 \sqrt{2}=3 \sqrt{2}
$$

$\sqrt{x^{2}+9}$ cannot be simplified. We could only simplify $\&$ take the roots of each number IF we have multiplication

$$
\sqrt{x^{2}} \times \sqrt{9}=x \times 3=3 x
$$

Correction:

There are 2 solutions, not 1 We always get 2 solutions when we take the even root

Every Time You Forget This:

 A BABY PANDA DIES

Me: if $X^{2}=9$ then X is 3

My math teacher:
There is another

Correction:
Dividing by x loses a solution. Factorise instead to solve. We want zero on one side first which we already had at the beginning. Factorising gives

$$
\begin{gathered}
x(x-2)=0 \\
x=0, x=2
\end{gathered}
$$

Correction:
We are solving a quadratic, not a linear equation!!! We want zero on one side first and then we Factorise OR use quadratic formula

$$
\begin{gathered}
x^{2}-2 x-3=0 \\
(x-3)(x+1)=0 \\
x=3, x=-1
\end{gathered}
$$

OVERKILL
Because, if Mr. Fluffykins doesn't do it, who will?

Correction:
These are both not wrong, but both equations are easy to solve and do not need the quadratic formula, which is overkill here.

$$
x^{2}-1=0
$$

We can easily get x on its own easily

$$
\begin{aligned}
& x^{2}=1 \\
& x= \pm 1
\end{aligned}
$$

$$
x^{2}+2 x=0
$$

We can't get x on its own as easily BUT this factorises

$$
\begin{gathered}
x(x+2)=0 \\
x=0, x=2
\end{gathered}
$$

Every Time You Do Any Of This:

$$
\begin{gathered}
2^{5}=10 \\
(-2)^{3}=8 \\
-2^{2}=4 \\
(-2)^{2}=-4 \\
37^{0}=0 \\
2^{-3}=-8
\end{gathered}
$$

A KOI GASPS IN SHOCK. "HOW COULD YOU?"

Every Time You Do Any Of This:

$(2 x)^{3}=2 x^{3}$
$(2 x)^{3}=6 x^{3}$
$\left(2^{x}\right)^{3}=8^{3 x}$
$2\left(3^{2}\right)=6^{2}$

Another baby otter picture is deleted from the internet

Correction:

Correction:

$37^{0}=1$ (ANYTHING raised to the power 0 is 1)

$$
2^{-3}=\frac{1}{2^{3}}=\frac{1}{8} \begin{aligned}
& \text { Negative powers have } \\
& \text { nothing to do with negative } \\
& \text { numbers }
\end{aligned}
$$

Correction:
Note of these can be simplified. Angles with trig are fixed unless we use identities
$2 \sin 2 x=4 \sin x \cos x$ is using double angle Formulae
$\sin (x+2)=\sin x \cos 2-\cos x \sin 2$ if using addition formula
© mymathscloud

Every Time You Do This:

This beagle looks at

 you very very sternlyCorrection:
We can split up fractions with 1 term
in denominator $\quad \frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}$ This is just the reverse direction of when we add or subtract fractions. If we look at this From right to left it makes sense, right? Never split up fractions when there are 2 or more terms in the denominator

Correction:

You can only do this when multiplying fractions, not when one fraction in on one side of an equals sign.
Instead, we can cross multiply

This gives

Actually, this dude is correct

He seriously deserves a medal for this

Given $\frac{1}{\infty}=0$, prove $\frac{1}{0}=\infty$.
$>$ Proof: Rotate $\frac{1}{\infty}=0$ anticlockwise $\left(90^{\circ}\right)$
giving $-18=0$
adding 8 to both sides, giving $-10=8$.
Then rotate $-10=8$ clockwise $\left(90^{\circ}\right)$,
giving $\frac{1}{0}=\infty$ Q.E.D.

$\infty-\infty=0$

$y=\ln x$
Express x in term of y .
Student:

Math teacher:

$15+15$ is thirty and $16+16$ is thirty too!

Proof that $2=1$	
If $\mathrm{a}=\mathrm{b}$ (so I say)	$\mathrm{a}=\mathrm{b}$
And we multiply both sides by a	
Then we'll see that a^{2}	$\mathrm{a}^{2}=\mathrm{ab}$
When with ab compared	
Are the same.	
Remove b^{2}. OK?	$\mathrm{a}^{2}-\mathrm{b}^{2}=\mathrm{ab}-\mathrm{b}^{2}$
Both sides we will factorize. See?	
Now each side contains a - b.	$(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})=\mathrm{b}(\mathrm{a}-\mathrm{b})$
We'll divide through by a	
Minus b and olé	Error: Divided by 0 . $\mathrm{a}-\mathrm{b}=0$ since $\mathrm{a}=\mathrm{b}$
$\mathrm{a}+\mathrm{b}=\mathrm{b}$. Oh whoopee!	$\mathrm{a}+\mathrm{b}=\mathrm{b}$
But since l said $\mathrm{a}=\mathrm{b}$	
$b+b=b$ you'll agree?	$b+b=b$
So if $b=1$	
Then this sum I have done	$1+1=1$
Proves that $2=1$.	$2=1$

